840 research outputs found

    Geometric Convergence of Distributed Heavy-Ball Nash Equilibrium Algorithm over Time-Varying Digraphs with Unconstrained Actions

    Full text link
    We propose a new distributed algorithm that combines heavy-ball momentum and a consensus-based gradient method to find a Nash equilibrium (NE) in a class of non-cooperative convex games with unconstrained action sets. In this approach, each agent in the game has access to its own smooth local cost function and can exchange information with its neighbors over a communication network. The proposed method is designed to work on a general sequence of time-varying directed graphs and allows for non-identical step-sizes and momentum parameters. Our work is the first to incorporate heavy-ball momentum in the context of non-cooperative games, and we provide a rigorous proof of its geometric convergence to the NE under the common assumptions of strong convexity and Lipschitz continuity of the agents' cost functions. Moreover, we establish explicit bounds for the step-size values and momentum parameters based on the characteristics of the cost functions, mixing matrices, and graph connectivity structures. To showcase the efficacy of our proposed method, we perform numerical simulations on a Nash-Cournot game to demonstrate its accelerated convergence compared to existing methods

    Accelerated ABAB/Push-Pull Methods for Distributed Optimization over Time-Varying Directed Networks

    Full text link
    This paper investigates a novel approach for solving the distributed optimization problem in which multiple agents collaborate to find the global decision that minimizes the sum of their individual cost functions. First, the ABAB/Push-Pull gradient-based algorithm is considered, which employs row- and column-stochastic weights simultaneously to track the optimal decision and the gradient of the global cost function, ensuring consensus on the optimal decision. Building on this algorithm, we then develop a general algorithm that incorporates acceleration techniques, such as heavy-ball momentum and Nesterov momentum, as well as their combination with non-identical momentum parameters. Previous literature has established the effectiveness of acceleration methods for various gradient-based distributed algorithms and demonstrated linear convergence for static directed communication networks. In contrast, we focus on time-varying directed communication networks and establish linear convergence of the methods to the optimal solution, when the agents' cost functions are smooth and strongly convex. Additionally, we provide explicit bounds for the step-size value and momentum parameters, based on the properties of the cost functions, the mixing matrices, and the graph connectivity structures. Our numerical results illustrate the benefits of the proposed acceleration techniques on the ABAB/Push-Pull algorithm

    Distributed Stochastic Optimization with Gradient Tracking over Time-Varying Directed Networks

    Full text link
    We study a distributed method called SAB-TV, which employs gradient tracking to collaboratively minimize the sum of smooth and strongly-convex local cost functions for networked agents communicating over a time-varying directed graph. Each agent, assumed to have access to a stochastic first-order oracle for obtaining an unbiased estimate of the gradient of its local cost function, maintains an auxiliary variable to asymptotically track the stochastic gradient of the global cost. The optimal decision and gradient tracking are updated over time through limited information exchange with local neighbors using row- and column-stochastic weights, guaranteeing both consensus and optimality. With a sufficiently small constant step-size, we demonstrate that, in expectation, SAB-TV converges linearly to a neighborhood of the optimal solution. Numerical simulations illustrate the effectiveness of the proposed algorithm

    Quantum-based Distributed Algorithms for Edge Node Placement and Workload Allocation

    Full text link
    Edge computing is a promising technology that offers a superior user experience and enables various innovative Internet of Things applications. In this paper, we present a mixed-integer linear programming (MILP) model for optimal edge server placement and workload allocation, which is known to be NP-hard. To this end, we explore the possibility of addressing this computationally challenging problem using quantum computing. However, existing quantum solvers are limited to solving unconstrained binary programming problems. To overcome this obstacle, we propose a hybrid quantum-classical solution that decomposes the original problem into a quadratic unconstrained binary optimization (QUBO) problem and a linear program (LP) subproblem. The QUBO problem can be solved by a quantum solver, while the LP subproblem can be solved using traditional LP solvers. Our numerical experiments demonstrate the practicality of leveraging quantum supremacy to solve complex optimization problems in edge computing

    Optimal Workload Allocation for Distributed Edge Clouds With Renewable Energy and Battery Storage

    Full text link
    This paper studies an optimal workload allocation problem for a network of renewable energy-powered edge clouds that serve users located across various geographical areas. Specifically, each edge cloud is furnished with both an on-site renewable energy generation unit and a battery storage unit. Due to the discrepancy in electricity pricing and the diverse temporal-spatial characteristics of renewable energy generation, how to optimally allocate workload to different edge clouds to minimize the total operating cost while maximizing renewable energy utilization is a crucial and challenging problem. To this end, we introduce and formulate an optimization-based framework designed for Edge Service Providers (ESPs) with the overarching goal of simultaneously reducing energy costs and environmental impacts through the integration of renewable energy sources and battery storage systems, all while maintaining essential quality-of-service standards. Numerical results demonstrate the effectiveness of the proposed model and solution in maintaining service quality as well as reducing operational costs and emissions. Furthermore, the impacts of renewable energy generation and battery storage on optimal system operations are rigorously analyzed

    CrowdCache: A Decentralized Game-Theoretic Framework for Mobile Edge Content Sharing

    Full text link
    Mobile edge computing (MEC) is a promising solution for enhancing the user experience, minimizing content delivery expenses, and reducing backhaul traffic. In this paper, we propose a novel privacy-preserving decentralized game-theoretic framework for resource crowdsourcing in MEC. Our framework models the interactions between a content provider (CP) and multiple mobile edge device users (MEDs) as a non-cooperative game, in which MEDs offer idle storage resources for content caching in exchange for rewards. We introduce efficient decentralized gradient play algorithms for Nash equilibrium (NE) computation by exchanging local information among neighboring MEDs only, thus preventing attackers from learning users' private information. The key challenge in designing such algorithms is that communication among MEDs is not fixed and is facilitated by a sequence of undirected time-varying graphs. Our approach achieves linear convergence to the NE without imposing any assumptions on the values of parameters in the local objective functions, such as requiring strong monotonicity to be stronger than its dependence on other MEDs' actions, which is commonly required in existing literature when the graph is directed time-varying. Extensive simulations demonstrate the effectiveness of our approach in achieving efficient resource outsourcing decisions while preserving the privacy of the edge devices

    Nonlinear Control of Flexible Two-Dimensional Overhead Cranes

    Get PDF
    Considering gantry cable as an elastic string having a distributed mass, we constitute a dynamic model for coupled flexural overhead cranes by using the extended Hamilton principle. Two kinds of nonlinear controllers are proposed based on the Lyapunov stability and its improved version entitled barrier Lyapunov candidate to maintain payload motion in a certain defined range. With such a continuously distributed model, the finite difference method is utilized to numerically simulate the control system. The results show that the controllers work well and the crane system is stabilized

    Nash equilibrium seeking over digraphs with row-stochastic matrices and network-independent step-sizes

    Full text link
    In this paper, we address the challenge of Nash equilibrium (NE) seeking in non-cooperative convex games with partial-decision information. We propose a distributed algorithm, where each agent refines its strategy through projected-gradient steps and an averaging procedure. Each agent uses estimates of competitors' actions obtained solely from local neighbor interactions, in a directed communication network. Unlike previous approaches that rely on (strong) monotonicity assumptions, this work establishes the convergence towards a NE under a diagonal dominance property of the pseudo-gradient mapping, that can be checked locally by the agents. Further, this condition is physically interpretable and of relevance for many applications, as it suggests that an agent's objective function is primarily influenced by its individual strategic decisions, rather than by the actions of its competitors. In virtue of a novel block-infinity norm convergence argument, we provide explicit bounds for constant step-size that are independent of the communication structure, and can be computed in a totally decentralized way. Numerical simulations on an optical network's power control problem validate the algorithm's effectiveness
    corecore